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Combined heat and mass transfer during absorption in films and drops is discussed. 
Using an approximate approach, simple analytic relations are obtained for the basic 
characteristics of the process. 

The physical processes which take place during absorption by liquid drops or films mov- 
ing in a medium containing an absorbable material are extremely diverse and complex. In 
studying them it is therefore rather useful to have rather simple and predictable models 
which give a qualitatively true reflection of them although failing to reproduce the detailed 
pattern of the phenomena. 

We consider the problem of combined heat and mass transfer during absorption of vapor 
by drops of fluid under the following assumptions. The atmosphere in which the drop is lo- 
cated contains no noncondensable gases. The drop is stationary with respect to the surround- 
ing vapor atmosphere and is spherical in shape. At the initial time t = 0, a state of sat- 
uration is established instantaneously over the entire surface of the drop for the absorbed- 
material-- liquid-solution system which is subsequently maintained throughout the entire proc- 
ess. 

The dependence of concentration C on temperature T in the state of saturation is linear, 
C = dT + b. 

All physical parameters of the problem (coefficients of thermal conductivity, diffusion, 
etc.) are constant over the ranges of temperatures and concentrations considered. 

Under the assumptions made, heat and mass transfer is described by the following sys- 
tem of equations: 
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with boundary conditions of the form 
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(i) 

C(t, R) = dT(t, R) -+- b, (2) 

~, OTor r=R: praD ~OC 'r=~" (3) 

We take 

T(0,  r ) = T  o , C(0, r ) = C  o 

as initial conditions for Eqs. (i), where Co is less than the saturation value corresponding 
to the temperature To. 

We also assume that the process of heat and mass transfer is localized near the surface 
of the drop within the limits of a layer with a thickness less than the radius of the drop. 
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Fig. i. Profiles of temperature (dashed lines) 
and concentration (solid lines) at various cross 
sections of a film (Le = 25; Tw/To = 0.5; dTo/ 
C, =_--0.5; b/Co = 117; Ka =--0.i)! I) x = 0.03; 
II) x = 0.09; III) x = 0.21; IV) x = 0.3. 

The possibility of a surface-layer approximation then follows. In that case, the initial 
conditions transform into boundary conditions at the boundary of an asymptotic surface layer, 
i.e., one can write 

TI . . . .  = To; (4) 

C( . . . . .  Co. (5) 

For the surface-layer approximation we also assume 

C(/, R) ----- C s (/); (6) 

T(t,  R)----Ts (t). (7) 

The temperature and concentration at the surface of the drop (Ts, Cs) are determined during 
the solution of the problem. 

By means of the substitutions C = (C -- Co)r and T = (T -- To)r, the system (I) with the 
boundary conditions 

~t 

~? = 2R (CS--Vzt c~ 3" exp ( - -  x ~) dx + R (C, - -  Co), 

o 
rl, 

I r = 2R (Ts - -  To) exp (--  x ~ dx + R (Ts - -  To)- 
V-~- . o 

Here C s and T s are considered constant during the integration. In the dimensionless vari- 

ables 

~ , =  T Fo a r -- ; . . . .  l ;  x = 
To R 2 R 

(4)-(7) reduces to a problem allowing a self-similar solution of the form 

C , 
e= 

this solution takes the form 

err [ VL-U(x- - I )  ] ~ s - - 1  
x 2 l/-F-ff + x + 1; 

= ~ -  I err + - - + 1 .  
x 2 V P--6- x 

We obtain the following expressions for Ts and Cs from conditions (2) and (3): 

C ~  1 / -~  1) CpLe. ( 1 - -1 )  
7, s = dTo V ~ Fo --  r~d V ~-Fo - ; 

V= Fo , r.d V k - ~  l 

~s'-- aT~ rF s + b_~ 
Co Co 

(8) 

(9) 

(10) 

(11) 
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Fig. 2. Dependence of mean bulk temperature and con- 
centration in a drop on Fo and of mean cross-sectional 
temperature and concentration in a film on x = x/RePrO; 
a) film; b) drop; I) @av; II) Cav; dTo/Co = -0.5; Le = 
25; b/Co = 1.7; Ka =-0.i; Tw/To = 0.5. 
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Using Eqs. (8)-(11), expressions can be obtained for the dimensionless flows of heat and 
mass at the surface of the drop: 

,=R=(?s--1) ( 1 

) 
Q , _  g T R _  R OT 
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Q,~ _--- g.,,R . _-- (6"s --1) ( 
- pDCo U ~  Fo 

and also for the mean bulk temperature and concentration: 
R 

1) ; (12) 

7'av-- T a v -  4 ~ T o  V .I r2~'(r' t) d r - - - 3 ( ? ' s - - 1 ) [ (  21 Fo) x 
o 

(13) 

• erf 1 l FF-O- ' 1 -- 1 '-- - -  ~- 
2 ],/F-o- ] / -~  exp 4 Fo ]/-~- 

R 

Cav--  Cav _ 4n r2~(t, r) d r : 3 ( ~ s _ l )  1 Fo 
Co V , -- 2 Ls X 

0 

As is clear from Eqs. (7)-(15), heat and mass transfer inside a drop are determined by 
the numbers Le and Fo, by Ka = dra/Cp, and by the concentration head (dTo + b -- Co). The 
quantity Ka is an analog of the phase transition criterion, since i/d has the dimensionality 
of temperature. Such a quantity was used by Sparrow and Spalding [i] in the problem of sub- 
limation in a channel. 

We investigate the relation for the dimensionless flow of mass, which is one of the 
basic characteristics of the process. 

Transforming Eq. (13) by means of Eqs. (i0) and (ii), we obtain 

RgM _ Le 
-- ( I Ka ] (16) 

Q~' = pD (dTo + b - -  Co) ~ ]/~e - -  ]/-~ Fo - -  1 - -  V'~--F--0- ] 

The form of Eq. (16) indicates that this expression is only valid for Fo < i/w. When Fo = 
1/7, ~ = 0, i.e., the absorption process ceases. 

We now consider the problem of combined heat and mass transfer during absorption of va- 
por by a liquid film flowing over an impermeable isothermal well. 

The fluid flow velocity v in the film and the film thickness 6 are assumed constant. In 
a Cartesian coordinate system (x, y) with the x axis having the same direction as the velocity 
v and lying along the wall, and with the origin on the wall at the initial cross section of 
the film, the process is described by the system of equations 

OT 02T 
OX Oy z ' 
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F i g .  3. Dependence of  mass f l ow  a t  drop s u r f a c e  
on Fo for various values of Ka and Le (dTo/Co : 
-0.5; b/Co =1.7): I) Ka =--1/7, Le = 25; II) Ka = 
--1/7, Le = 37; III) Ka = --1/12, Le = 25; IV) Ka = 
--1/12, Le = 37. 

with the boundary conditions 

a c  a~c  
v - -  = D  ~ ( 1 7 )  

dx ay 2 

~$ ~ T$ 

To 

T (0, y) = To; (18) 

C (0, y) = Co; (19) 

T(x, 0) = Tw; (20) 

a c  ] = o; (21) 
ay ly=o 

C(x, 6) = dT(x, 6) -- b; (22) 

aC 'y 6 = Cp Le OT ,I (23) 
dy = d ay ,y=~ 

The n e c e s s a r y  p h y s i c a l  a s s u m p t i o n s  used  in  Eqs.  (17 ) - (23 )  were a d a p t e d  from t h e  p r e c e d -  
ing  problem.  

Evaluations of the exact solution of Eqs. (17)-(23) show that the temperature profile is 
nearly linear in each transverse section of the film. Therefore one can reasonably assume 

T _-- (Ts-- Tw)Y/- Tw" (24) 

Then Eq. (24) f o r m a l l y  s a t i s f i e s  Eq. (17) .  

Now one can consider the approximation of an asymptotic surface layer for concentration 
as was done in the preceding problem. The corresponding self-similar solution has the form 

~= C =(l_~s) erf~ _~s" (25) 
Co 

Uslng saturation condition (22) and Eq. (23) for the heat flow at the surface of the 
film for T s and Cs, the following expressions can be found: 

F ~  
~" ~X 

; (26) 

V e T  - Ka 

C s -  dr~ rl's-}- b (27) 
Co Co 

(24)-(27) : Expressions for the average values over a cross section follow from Eqs. 
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For the dimensionless flows of heat and mass we have, respectively, 

Transforming Eq. (31) by means of Eqs. (26) and (27) leads to 

(28) 

Le 

(3o) 

(31) 

= ~gM : Le (32) 

Q~' pD(dTw +b--Co) , /2L 1 /2Re_l /2pr_ l /2  ( x ~1/2 K a 
k-U/ 

It is clear from Eqso (16) and (32) that in the first case the flow of absorbable mate- 
rial normalized to the concentration head is determined by a system of the three numbers Fo, 
Le, and Ka, and in the second case by a system of the four numbers Re, Pr, Le, and Ka. Equa- 
tions (8)-(16) and (24)-(32) were used for calculations in the parameter range typical of 
bromine-- lithium absorbers. 

The calculated curves are shown in Figs. 1-3. The results can be particularly useful 
in the analysis of experimental data for the absorption of vapor in liquid drops and films. 

NOTATION 

r, distance measured from center of drop; a, coefficient of thermal diffusivity; D, dif- 
fusion coefficient; ~, coefficient of thermal conductivity; ra, heat of absorption including 
heat of phase transition and heat of solution; d, b, constants depending on saturation pres- 
sure; R, radius of drop; 9, density of fluid; ~I, ~z, ~, self-similar variables [~, = (r -- 
R)/2~; nz = (r -- R)/2 D~; n = v~e(l --~)/2r Le =a/D, Lewis number; Fo, Fourier number; 
Re = v6/~, Reynolds numbe~; Pr = 9La, Prandt! number; gT, gM dimensional flows of heat and 
mass; V, volume of drop; y = y/f; x = xa/v~ 2. 
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